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Abstract

Instantaneous di�erential pressure signals of oil±gas±water multiphase ¯ow in a horizontal pipe are
measured with a piezo-resistance di�erential pressure transducer with fast response. The signals are
denoised by using wavelet theory and then the characteristic vectors of various ¯ow regimes are
obtained from the denoised di�erential pressure signals with fractal theory. The characteristic vectors of
known ¯ow regimes are fed into a neural network for training and later on weight coe�cients of neural
network are obtained through training. Then, the characteristic vector of some kind of unknown ¯ow
regime of oil±gas±water multiphase ¯ow is fed into the neural network and the neural network can
automatically send out the information in respect to the classi®cation of ¯ow regime, thus the intelligent
identi®cation of ¯ow regime of oil±gas±water multiphase ¯ow is realized. Practice shows that this new
method for identifying ¯ow regimes of multiphase ¯ow and the system constructed with the method has
the merits of high accuracy, fast response and automatic identi®cation without arti®cial intervention etc.
It will have promising application prospect. 7 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to the shortage of oil resources in land, the focus of exploitation of oil and natural gas
has been transferred from land to sea. There are very rich resources, such as oil and gas in the
sea (for e.g., North Sea in the UK). Now more and more oil ®elds in the sea have been put
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into production. As the construction of oil ®eld on the sea is complex and expensive, it is very
important to select economic and reliable method for transportation in order to save the cost
of transportation. It is reported that the scheme of mixing transportation of oil and natural gas
can save about 10±40% of investment on the sea. However, the design of system of mixing
transportation and the selection of relevant devices are very closely correlated to the ¯ow
regime of oil±gas±water multiphase ¯ow in the pipe. During the process of oil±gas
transportation, a set of automatic devices for identifying the ¯ow regime in the pipe are needed
to monitor the ¯ow regime and thus make the ¯uid ¯ow in most e�ective way for
transportation. The whole automatic device consists of transducers, data acquisition unit, data
analysis unit and performer, thus the transportation of oil±gas is controlled without the
interference of man.
Flow pattern information in gas liquid ¯ows is usually obtained by visual observation. The

designation of ¯ow pattern has not yet been accurately standardized and depends largely upon
individual interpretation of visual observations, therefore, a variety of classi®cations exist.
The major di�culty in visual observation, even using high speed photography, is that the

picture is often confusing and di�cult to interpret, especially when dealing with high velocity
¯ows. In addition, there are systems which are opaque where ¯ow visualization is impossible.
Although considerable experimental work has been performed studying two phase gas liquid
¯ows, not very much was done in the development of an objective device for the ¯ow pattern
classi®cation Jones and Delhaye (1976) reviewed and summarized a variety of measuring
techniques used in two phase ¯ow of which only few are used directly for ¯ow pattern-
characterization. Hsu et al. (1963) utilized a hot wire anemometry technique for measuring
void distribution for vertical ¯ow and used the signal output also for ¯ow pattern
characterization. Jones and Zuber (1975) developed an X-ray void measurement system for
obtaining statistical measurements in vertical air water ¯ow in a rectangular channel. The
probability density function of the void fraction ¯uctuations was used as a quantitative ¯ow
pattern discriminator for bubbly, slug and annular ¯ow. Govier et al. (1957), Chaudhry et al.
(1965) and Isbin et al. (1959) tried to relate the ¯ow pattern to the pressure gradient variation.
Their results, however, are not systematic. Furthermore, it needs mapping of the pressure
gradient with ¯ow conditions, namely the ¯ow pattern can not be detected at one ¯ow
condition. Hubbard and Dukler (1966) suggested a method by which the ¯ow pattern can be
determined from the spectral distribution of the wall pressure ¯uctuations. They distinguished,
however, only between separated, intermittent and distributed ¯ows.
While all these studies have contributed to the understanding of ¯ow regime classi®cation,

these traditional identi®cation methods of ¯ow regime have the shortcomings such as
subjectivity and high requirements of complex measuring systems. Mi et al. (1997) recently
developed a multiple neural network system with input from impedance-based measurement to
classify horizontal ¯ow regime. After training the system, the tested result was in agreement
with visual observation of the authors. The advantage of the method over the former is that
the trained system can automatically send out the information about ¯ow regime. However,
adopting the impedance combination of two-phase mixture as the inputs of neural network has
following disadvantages. Firstly, it only suits the cases of two-phase ¯ow, especially in which
the di�erence of conductivity and dielectric coe�cient between gas and liquid phase is rather
high. Secondly, the measurement results are easyily a�ected by the temperature variation, the
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shape and structure of the electrode and the variation of liquid phase's dielectric coe�cient
resulting from the impurity. Moreover, the pipe should be made of non-conducting material to
ensure the pipe be electrically insulated. In order to implement automatic identi®cation of ¯ow
regime of multiphase ¯ow on line, the technology of arti®cial neural network (ANN) is
adopted in this paper. At ®rst, ANN ®nds out the correlation between the training samples
and the expected outputs, then according to the obtained correlation, ANN computes the
outputs corresponding to test samples. Because ANN can process high non-linear data with
good stability and low sensitivity to noises, it has been widely used in many ®elds. In this
paper, instantaneous di�erential pressure signals of multiphase ¯ow are measured with a piezo-
resistance di�erential pressure transducer, then the signals of the transducer are acquired
through computer and processed through wavelet theory, fractal theory and ANN technology,
thus an intelligent identi®cation system of ¯ow regime is realized.

2. Experimental apparatus

2.1. Flow loop

In this paper, mineral oil, air and water are used to simulate the horizontal oil±gas±water
multiphase ¯ow, composed of crude oil, natural gas and water in situ.
As shown in Fig. 1, water is supplied from water tank (2) and ¯ows through a calibrated

ori®ce ¯ow-meter (9) into an oil±water mixer (11). Oil is supplied from oil tank (1) and also
¯ows through a calibrated ori®ce ¯ow-meter (8) into the oil±water mixer (11). Then the oil±
water mixture ¯ows into an oil±gas±water mixer (12). Air is supplied from compressor (3),
¯ows through air pressure bu�er (5) and calibrated ori®ce ¯ow-meter (10) into the oil±gas±
water mixer (12) and mixes with oil±water mixture. The oil±gas±water mixture then ¯ows
through test section (13) into a gas±liquid separator (14) where air is separated to the
atmosphere and the oil±water mixture ¯ows into an oil±water separator (4). The separated oil
and water ¯ow back to oil tank and water tank, respectively, for cycling utilization.

2.2. Test section

As shown in Fig. 2, the test section is made up of plexi-glass tube with inner diameter D of
40 mm. The inlet length of test section is 3.25 m (L/D = 81.25). The length of test section is 2
m (L/D = 50). The outlet length of test section is 3 m (L/D = 75). There are two pressure
taps at the bottom of the pipe. Through tubing, a piezo-resistance di�erential pressure
transducer is linked with the two pressure taps and used to measure pressure drop of the oil±
gas±water multiphase ¯ow between the two taps. The interval between the two taps is 205 mm.
During measurement, the medium in the tubing between taps must be the same one, either

water or oil. However, because of the random phase distribution and the ¯ow complexity, the
¯uctuation of the pressure drop is so large that ¯uid in the main pipe easily rushes into the
tubing and a larger measurement error occurs. In the experiment the tubing is ®lled with water.
At the same time, in order to prevent gas from rushing into tubing, a gas±liquid separating
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box, which is ®lled with water, is arranged between the tube and the tap. The separating box
ensures single phase liquid in the tubing and e�ectively reduces the measuring error.

3. Structure of the ¯ow regime identi®cation system

As shown in Fig. 3, the system of ¯ow regime identi®cation is composed of di�erential
pressure measuring unit, data acquisition unit and data processing unit. Di�erential pressure
measuring unit and data acquisition unit constitute the hardware part of the system, while data
processing unit constitutes the software part of the system.

4. Hardware part

Di�erential pressure measuring unit consists of a constant current source and a piezo-
resistance di�erential pressure transducer mentioned above.
Data acquisition unit consists of a computer and PCL-818HG data acquisition card

(product of Advan Tech, Taiwan). It can do on-line acquisition and storage of the output of

Fig. 1. Sketch of ¯ow loop of horizontal oil±gas±water multiphase ¯ow. 1. oil tank; 2. water tank; 3. air
compressor; 4. oil-water seperator; 5. air pressure bu�er; 6. water pump; 7. oil pump; 8. ori®ce ¯ow meter of oil
loop; 9. ori®ce ¯ow meter of water loop; 10. ori®ce ¯ow meter of gas loop; 11. oil-water mixer; 12. oil-water-gas

mixer; 13. test section; 14. gas-liquid separator; 15. corrugated plate.
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the system of di�erential pressure measuring. The signals are conditioned through 8115 card,
converted into digital quantity through PCL-818HG card and then sent into computer. The
PCL-818HG card is a high gain, high performance multi-function data acquisition card for
computer. Its programmable-gain instrument ampli®er (�0.5, 1, 5, 10, 50, 100, 500 or 1000)

Fig. 2. Sketch of test section. A: inlet section; B: test section; C: outlet section. DP: piezo-resistance di�erential

pressure transducer.

Fig. 3. Sketch of the structure of the intelligent identi®cation system.
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lets you acquire very low level input signals without external signal conditioning. An on-
board 1 K word FIFO (First Input and First Output) bu�er provides high-speed data
transfer and perfect performance under Windows. Automatic channel scanning circuit and
on-board SRAM let you perform multiple-channel A/D conversion with DMA and
individual gains for each channel.

5. Software part (data processing unit)

Software unit (data processing unit) is composed of denoising, quanti®cation of the
characteristics of signals and identi®cation with neural network. It denoises the measured
di�erential pressure signals, then through computer implements intelligent identi®cation which
needs to quantify the characteristics of di�erent ¯ow regimes. Thus the characteristic vectors
can be fed into neural network and the sort of ¯ow regime are sent out as output.

5.1. Denoising the signal using wavelet theory

In order to identify ¯ow regime of oil±gas±water multiphase ¯ow, di�erential pressures of
multiphase ¯ow are measured with a piezo-resistance di�erential pressure transducer in this
paper. However, there are always some random noises in the measured signals because of pipe
vibration etc. Moreover, as the signals are input into computer after A/D conversion, the
analog quantity is converted into digital quantity with limited word length, there are some
errors between the ideal output and real output of the acquisition system. We refer to this
error as quantization error, i.e., quantization noise. In order to identify the ¯ow regime
correctly, noises in the measured signals need to be eliminated.

5.1.1. Main idea of denoising algorithm of wavelet
The main idea of denoising signal by using wavelet theory is to discard the noise

component based on the di�erences between the wavelet spectrum of noise and true signal at
di�erent scales (Mallat and Hang, 1992), then reconstruct the signal (without noise) using the
algorithm of wavelet transform reconstruction. After the wavelet transformation, the wavelet
spectrum of noise will fade at large scale while that of true signal is still very clear at large
scale. Therefore, the maximum modular values of noise can be distinguished from that of
true signal through the observation of evolution of the maximum modular value of true
signal and noise with the variance of scales. If the amplitude of wavelet modular maximum
value increases sharply with the decrease of scale, it means that the corresponding singularity
has negative Lipschitz index and these maximum modular values are mainly caused by noise
and should be eliminated. Thus, the maximum modular values remaing at large scales mainly
belong to the true signal. Thus, we can trace the maximum modular value of the signal at
di�erent scales from large to small and ®nd out which belong to the true signal, then
reconstruct the di�erential pressure signal of di�erent ¯ow regimes. Compared to traditional
denoising methods, which need to arti®cially determine the frequency band of noise, the
method of wavelet does not need any prior knowledge of the signal and can better preserve
the information of primary signals.
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5.1.2. Basic steps of denoising algorithm of wavelet

1. Discrete diadic wavelet transform is performed for the discrete signal with noises. Sigularity
points are searched from the pre-selected maximum scale j = 4.

2. The threshold T0 � C �M=J is computed. M is the maximum amplitude at the maximum
scale J, C is a constant.

3. Wavelet transforms at the points line jW2J f�x�j < T0 at scale j � J are assigned zero.
4. If jW2J f�x�j > T0, then the Lipschitz exponent of corresponding point x is calculated based

on the following equation

a � log2

����W2 j�1f�x�
W2J f�x�

����
in which j is assigned 4. If a is less than 0 at some point of x, a is assigned 0.

5. The wavelet transforms of scales from 1 to J ÿ 1 are assigned zero.
6. Based on the wavelet transform processed by step 3, the wavelet transforms of scales from J
ÿ 1 to 1 are reconstructed.

7. The signal is reconstructed based on the reconstructed wavelet transforms.

5.1.3. Examples of denoising algorithm using modulus maxima of wavelet transform

5.1.3.1. Simulation of denoising using modulus maxima of wavelet transform. In order to test the
denoising algorithm, denoising of simulation signal of since wave accompanial with noises is
performed, as shown in Fig. 4a.

(a) Wavelet transform of the simulation signal is ®rst performed, then modulus maxima are
selected at each scale as shown in Fig. 4b. Fig. 4b shows that noises are mainly concentrated
on the smallest scales of 1 and 2.
(b) Modulus maxima which can propagate to the next scale are searched and preserved,
while modulus maxima which can not propagate to the next scale are removed as shown in
Fig. 4c.
(c) The signal is reconstructed with alternative projecting algorithm as shown in Fig. 4d,
from which we can see that noises have been removed.

5.1.3.2. Application to oil±gas±water multiphase ¯ow. Fig. 5 illustrates the denoising procedure
of di�erential pressure signal of intermittent ¯ow of oil±gas±water multiphase ¯ow.

5.2. Quantifying the characteristics of di�erent ¯ow regime of oil±gas±water multiphase ¯ow
using fractal theory

It is reported that multiphase ¯ow exhibits characteristics of fractal (Hagiwara, 1988), which
is expressed by fractal dimension. So fractal dimension is adopted as the characteristics of oil±
gas±water multiphase ¯ow. Fractal dimension has many types such as information dimension
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Fig. 4. Simulation of denoising using modulus maxima of wavelet transform.
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Fig. 4 (continued)
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Fig. 5. Denoising procedure of di�erential pressure signal of horizontal annular ¯ow of oil±gas±water multiphase
¯ow. (a) di�erential pressure signal of horizontal annular ¯ow oil-gas-water multiphase ¯ow; (b) modulus maxima
of di�erential pressure signal; (c) modulus maxima of denoised di�erential pressure signal; (d) di�erential pressure

signal after denoising.
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and correlation dimension etc. Correlation dimension (Mandelbrot, 1982) is used more often in
practice.
The di�erential signal of oil±gas±water multiphase ¯ow in horizontal pipe which has been

sampled at equal intervals is

p1, p2, p3, . . . , pi, . . .

in which pi is the di�erential pressure measured at time i. From this time series, vectors with
dimension of m are constructed by the method of time di�erence.
Set m � 5, y1��p1, p2, p3, p4, p5�, then shift one step to the right, set y2��p2, p3, p4, p5, p6�,

thus we can construct a series of vectors y1, y2, . . . , yk:
The absolute value of the di�erence between any two vectors rij � jyi ÿ yjj is the distance

between vector yi and yj: Taking a certain value of e, and compare it with all rij, the number of
rij < e is N1�e� and the number of rij > e is N2�e�: The total number of rij is

N � N1�e� �N2�e� � k�kÿ 1�=2:
All vectors whose distance is less than the given value e is called correlated vectors. The
proportion of correlated vectors in the total number N are called correlation integral:

c�e� � N1�e�
N

De®ning correlation dimension

D � ln c�e�
ln e

When dealing with di�erent ¯ow regimes of oil±gas±water multiphase ¯ow di�erent pressure
signals are measured with the same sampling points. Let e be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, respectively; nine correlation dimensions can be computed for each work condition of the
¯ow.
Arrange these nine correlation dimensions as nine components of a vector. This vector is the

characteristic vector of each ¯ow regime of oil±gas±water multiphase ¯ow at di�erent work
condition (for example the characteristic vector of the ®rst working condition in Table 1 is
(0.62, 0.38, 0.33, 0.33, 0.36, 0.43, 0.54, 0.71, 1.00)). Then, we can use characteristic vectors of
di�erent working conditions as the input vectors of neural network mentioned later in this
paper.

5.3. Improving BP neural network with nonlinear least squares method

Nowadays the most popular neural network used in the ®eld of model identi®cation is BP
neural network (Jiao, 1995) based on the back-propagation learning algorithm. As the back-
propagation learning algorithm is a kind of gradient descent algorithm and has shortcomings
such as liability to run into local minimum and slow learning speed etc., we apply nonlinear
least squares algorithm to improve back-propagation learning algorithm. Its advantage is its
very good numerical stability and convergence speed. For very large networks the memory

H. Wu et al. / International Journal of Multiphase Flow 27 (2001) 459±475 469



Table 1
Examples of characteristic vector of horizontal oil±gas±water multiphase ¯ow

Flow Velocity of each
phase of multiphase ¯ow

Correlation dimension D2

Gas
(m/s)

Oil
(m/s)

Water
(m/s)

e � 0:9 e � 0:8 e � 0:7 e � 0:6 e � 0:5 e � 0:4 e � 0:3 e � 0:2 e � 0:1

2.341 0.253 0.026 0.62 0.38 0.33 0.33 0.36 0.43 0.54 0.71 1.00
3.162 0.099 0.023 0.38 0.23 0.17 0.15 0.14 0.14 0.15 0.19 0.34

6.084 0.235 0.027 0.15 0.07 0.05 0.04 0.04 0.05 0.07 0.13 0.31
5.706 0.102 0.02 4.22 2.53 2.01 1.79 1.70 1.68 1.71 1.80 1.99
6.379 0.699 0.068 0.29 0.16 0.14 0.13 0.15 0.20 0.29 0.45 0.72
2.758 0.183 0.053 0.41 0.21 0.16 0.16 0.19 0.25 0.35 0.51 0.80

6.084 0.238 0.058 0.17 0.09 0.07 0.06 0.05 0.06 0.09 0.18 0.40
5.635 0.352 0.095 1.15 0.61 0.43 0.36 0.33 0.35 0.43 0.58 0.85
10.169 0.300 0.092 0.11 0.06 0.04 0.04 0.04 0.08 0.16 0.34 0.68

3.047 0.507 0.120 0.90 0.50 0.36 0.29 0.26 0.26 0.30 0.42 0.69
5.411 0.500 0.115 1.39 0.75 0.54 0.43 0.39 0.41 0.48 0.63 0.88
9.604 0.453 0.113 0.26 0.18 0.17 0.18 0.22 0.29 0.40 0.60 0.93

3.309 0.633 0.176 1.69 0.89 0.63 0.53 0.50 0.52 0.60 0.73 0.97
7.388 0.662 0.184 0.74 0.47 0.42 0.43 0.49 0.58 0.72 0.91 1.17
10.718 0.710 0.177 4.90 3.00 2.42 2.18 2.08 2.05 2.08 2.19 2.38

13.732 0.689 0.165 5.73 3.47 2.77 2.48 2.35 2.31 2.35 2.45 2.69
2.7833 0.066 0.026 5.24 3.05 2.36 2.05 1.90 1.83 1.82 1.85 1.93
3.150 0.128 0.052 0.81 0.53 0.47 0.47 0.53 0.62 0.76 0.93 1.16
2.972 0.196 0.087 3.66 2.25 1.82 1.65 1.58 1.57 1.60 1.68 1.86

5.333 0.190 0.086 0.22 0.14 0.13 0.15 0.20 0.29 0.42 0.63 0.96
2.030 0.277 0.115 1.24 0.78 0.67 0.66 0.69 0.77 0.88 1.03 1.24
4.965 0.284 0.117 0.25 0.15 0.12 0.12 0.14 0.20 0.31 0.49 0.81

1.857 0.395 0.189 0.68 0.44 0.40 0.42 0.46 0.54 0.65 0.81 1.02
4.572 0.396 0.175 0.58 0.34 0.26 0.24 0.24 0.28 0.36 0.52 0.77
11.007 0.428 0.176 4.04 2.48 2.01 1.81 1.74 1.73 1.77 1.87 2.07

3.892 0.684 0.305 0.95 0.53 0.42 0.39 0.41 0.46 0.56 0.73 0.99
8.195 0.696 0.288 2.20 1.23 0.94 0.83 0.80 0.84 0.93 1.07 1.30
11.600 0.714 0.301 0.89 0.50 0.39 0.36 0.36 0.40 0.49 0.65 0.94
2.300 0.227 0.158 0.32 0.23 0.22 0.25 0.30 0.37 0.49 0.68 0.96

5.502 0.237 0.165 0.45 0.25 0.20 0.19 0.18 0.20 0.27 0.43 0.73
11.317 0.229 0.156 0.43 0.23 0.18 0.17 0.17 0.21 0.30 0.48 0.81
3.903 0.381 0.278 0.58 0.34 0.29 0.28 0.31 0.37 0.48 0.66 0.96

8.883 0.410 0.276 1.72 1.02 0.81 0.74 0.73 0.78 0.88 1.05 1.33
7.234 0.563 0.348 2.53 1.45 1.13 1.01 0.99 1.02 1.09 1.21 1.42
12.764 0.539 0.376 1.54 1.03 0.91 0.90 0.94 1.02 1.15 1.34 1.64

16.507 0.103 0.027 4.16 2.56 2.09 1.90 1.83 1.81 1.86 1.95 2.11
20.818 0.116 0.025 5.49 3.32 2.65 2.36 2.23 2.18 2.20 2.30 2.50
22.037 0.203 0.057 4.90 3.04 2.48 2.25 2.15 2.13 2.18 2.30 2.53

18.881 0.340 0.093 7.16 4.22 3.29 2.85 2.65 2.55 2.53 2.60 2.76
17.430 0.503 0.122 6.43 3.83 3.01 2.64 2.46 2.39 2.39 2.47 2.63
29.446 0.055 0.022 4.38 2.71 2.21 2.01 1.94 1.94 1.99 2.12 2.36
26.577 0.099 0.054 5.58 3.36 2.68 2.38 2.24 2.20 2.23 2.31 2.50

20.870 0.173 0.078 4.88 2.99 2.41 2.16 2.06 2.03 2.07 2.17 2.39
27.948 0.059 0.044 3.41 2.15 1.80 1.68 1.65 1.68 1.76 1.89 2.13
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requirements of the algorithm make it impractical for most current machines (as in the case for
the quasi-Newton methods). However, as in the ®eld of intelligent identi®cation of ¯ow regime,
weights of the neural network is not more than 1000. At this time its advantage predominates
over its disadvantages. So this method is very suitable for the intelligent identi®cation of ¯ow
regime.
Consider a three-layer feed-forward network:

node of output layer k �k � 1, . . . , K �,
node of hidden layer j �j � 1, . . . , J �,
node of input layer i �i � 1, . . . , I �:

Wkj, Wji represent the weights between output layer and hidden layer, the weights between
hidden layer and input layer, respectively. Arranging all weights and thresholds in the network
into a vector with dimension of n.

w � �w1, w2, . . . , wn �T �1�

Then, the mapping relationship of the neural network can be written as

ŷ�p, w� � f�x p, w� �2�

where x p is the pth training model vector, f��� is a nonlinear mapping. ŷ�p, w� is the output
vector of neural network.
Given a group of train models fx p, y pgNp�1, where y p is the expectation output, N is the

number of training models, the purpose of training of network is to minimize the distance
between the network output ŷ�p, w� and the expectation output y p by adjusting the weight of
w.
If the objective function is selected as following

E�w� � 1

2

XN
p�1

�
y p ÿ ŷ�p, w�

�T�
y p ÿ ŷ�p, w�

� �3�

then the optimal weight of w can be obtained by minimizing the above objective function.
Generally iteration equation

w�k� 1� � w�k� � akpk �4�

is adopted to minimize Eq. (3).
Where k is the iteration epoch, pk is the searching direction computed from the estimated

parameter values of the former iteration. a is a small nonegative number and should be
properly selected in order to ensure convergence of iteration.
In BP learning algorithm, the searching direction is adopted as pk � ÿE�w�k��, which leads

to the shortcomings mentioned above. Therefore, nonlinear least squares method is adopted to
overcome BP's shortcomings. In detail, a regular term is added to objective function (3) in
order to limit the range of variation of the parameter of w
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Ek�w� � 1

2

XN
p�1

�
y p ÿ ŷ�p, w�

�T�
y p ÿ ŷ�p, w�

�� 1

2

�
wÿ ŵ�k�

�T�
wÿ ŵ�k�

�
�5�

In order to solve the minimum point of modi®ed objective function (5), write the nonlinear
mapping f�x p, w� in Taylor's series of the ®rst order at the point of w � ŵ�k�

f�x p, w�1f
ÿ
x p, ŵ�k�

�
� rf

ÿ
x p, ŵ�k�

��
wÿ ŵ�k�

�
�6�

where rf�x p, ŵ�k�� is the Jacobi matrix of f�x p, w�: Let

Y�N� �
�
y1, y2, . . . , yN

�T
Ŷ�w� � �ŷ�1, w�, ŷ�2, w�, . . . , ŷ�N, w��T

rf T�x, w� �
h
rf T

ÿ
x1, w

�
,rf T

ÿ
x 2, w

�
, . . . , rf T

ÿ
xN, w

�iT

Then the modi®ed objective function (5) can be written as

E�w� � 1

2

h
Y�N� ÿ Ŷ�w�

iTh
Y�N� ÿ Ŷ�w�

i
� m

2

�
wÿ ŵ�k�

�T�
wÿ ŵ�k�

�
�7�

Writing Ŷ�w� in Taylor's series of the ®rst order at the point of w � ŵ�k� and then substituting
the expansion series into Eq. (7), we get

rEk�ŵ�k��1rf T
ÿ
x, ŵ�k�

��
Y�N� ÿ Ŷ�ŵ�k��

�
�8�

r 2Ek�w�k�� � rf T
ÿ
x, w�k�

�
rf
ÿ
x, w�k�

�
� mI �9�

Thus, using Newton iteration equation

w�k� 1� � w�k� � akpk

pk � ÿ
�
r 2Ek�ŵ�k��

�ÿ1rEk�ŵ�k�� �10�
we get the learning algorithm of improved BP neural network

w�k� 1� � w�k� ÿ ak
�
mI�rf T

ÿ
x, w�k�

�
rf
ÿ
x, w�k�

��ÿ1rf T
ÿ
x, w�k�

��
Y�N� ÿ Ŷ�w�k��

�
�11�

where ak is iteration step, searching direction is

pk � ÿ
�
mI� rf T

ÿ
x, w�k�

�
rf
ÿ
x, w�k�

��ÿ1rf T
ÿ
x, w�k�

��
Y�N� ÿ Ŷ�w�k��

�
�12�

6. Application of the improved BP neural network to the identi®cation of ¯ow regime

Although the ¯ow regimes of three phase ¯ow are very complicated, what we care in
industry is mostly about the overall property of the gas±liquid interface. Therefore, in this
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paper the ¯ow regime of oil±gas±water multiphase ¯ow is simpli®ed into two phase ¯ow, that
is gas phase and liquid phase (The oil phase and water phase are integrated as liquid phase).
Thus, the ¯ow regimes are classi®ed into strati®ed ¯ow, intermittent ¯ow and annular ¯ow
similar to two-phase ¯ow regimes.
Neural network works in three steps. First it constructs a mapping relationship between

known input vectors and output vectors, then it is evaluated by some testing samples, ®nally it
used practically.
The ®rst step requires an expected output vector for each known input vector. This pair of

vectors is called a train-pair. Commonly, many train-pairs are needed to train neural network
e�ciently. For a certain train-pair, the error between the calculated output vector given by
neural network and the expected output vector is used to update the weights of network by the
method of error back-propagation algorithm. Network repeats computing the error for each
train-pair and updating the weights until the global error of all train-pairs reaches an
acceptable level.
In this paper, let the expected output vector of strati®ed ¯ow be (1, 0, 0), that of intermittent

¯ow be (0, 1, 0), and that of annular ¯ow be (0, 0, 1).
The characteristic vectors mentioned in Section 5.2 are selected as the input vectors of the

neural network. The neural network has one input layer and one hidden layer. The input layer
consists of nine neural cells, corresponding to the nine components of the input vectors. The
hidden layer consists of ®ve neural cells. The output layer consists of three neural cells,
corresponding to the three di�erent ¯ow regimes of oil±gas±water multiphase ¯ow in
horizontal pipe (strati®ed ¯ow, intermittent ¯ow and annular ¯ow).

Fig. 6. The error curve of training of the improved BP NN.
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The error goal of the neural network is de®ned as 10ÿ4. Two hundred operating conditions
of experiment are selected as training models to train the network, then 95 operating
conditions are selected as test samples. The error curve of training of the improved BP neural
network is shown in Fig. 6.
Identi®cation results of the neural network after training is shown in Tables 2 and 3, from

which we can ®nd that the identi®cation ability of the neural network is rather good.

Table 2
Part of test samples and identi®cation results

Correlation dimension D2 Identi®cation
results of

NNa

Flow
regime

e � 0:9 e � 0:8 e � 0:7 e � 0:6 e � 0:5 e � 0:4 e � 0:3 e � 0:2 e � 0:1

2.46 1.44 1.13 0.99 0.93 0.93 0.96 1.05 1.24 I I
0.85 0.50 0.41 0.40 0.44 0.53 0.66 0.86 1.12 I I
2.97 1.67 1.26 1.08 1.01 1.01 1.07 1.20 1.43 I I

1.85 1.16 0.98 0.94 0.96 1.04 1.15 1.31 1.57 I I
6.42 3.71 2.85 2.45 2.24 2.13 2.09 2.10 2.22 A A
4.70 2.82 2.24 1.99 1.88 1.85 1.87 1.93 2.12 A A
4.69 2.85 2.29 2.06 1.96 1.93 1.96 2.05 2.27 A A

0.74 0.51 0.47 0.49 0.55 0.65 0.78 0.96 1.23 I I
4.32 2.63 2.12 1.91 1.83 1.82 1.87 1.99 2.23 A A
2.28 1.43 1.19 1.12 1.13 1.19 1.29 1.45 1.72 S I�

4.97 3.07 2.49 2.26 2.16 2.14 2.19 2.32 2.54 A A
5.73 3.47 2.77 2.48 2.35 2.31 2.35 2.45 2.69 I I
6.37 3.77 2.94 2.56 2.37 2.28 2.25 2.29 2.44 A I

4.93 3.04 2.46 2.21 2.11 2.09 2.12 2.20 2.37 I I
3.10 1.95 1.62 1.50 1.48 1.50 1.57 1.69 1.94 I I
0.98 0.67 0.61 0.63 0.69 0.79 0.93 1.13 1.44 I I

1.74 1.14 1.00 0.99 1.04 1.12 1.25 1.45 1.75 I I
0.60 0.43 0.41 0.45 0.52 0.59 0.68 0.80 0.96 I I
1.46 0.92 0.77 0.72 0.71 0.73 0.80 0.90 1.09 I I
2.45 1.52 1.25 1.15 1.13 1.16 1.24 1.38 1.61 S S

2.20 1.43 1.22 1.17 1.20 1.26 1.34 1.45 1.64 S S

a S denotes strati®ed ¯ow, I denotes intermittent ¯ow, A denotes annular ¯ow, � denotes that the identi®cation

results of the NN are not in accordance with the real ¯ow regime.

Table 3
Identi®cation results of improved BP neural network

Flow regime category

Strati®ed ¯ow Intermittent ¯ow Annular ¯ow

Number of right identi®cation 19 46 23

Identi®cation accuracy rating 95% 92% 92%
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7. Conclusion

1. Traditional identi®cation methods of ¯ow regime highly depend on the subjective judgement
of researchers and require complex measuring systems or instruments, therefore, the
applications of the old methods in industry are limited. In addition, it sometimes needs
certain parameters of the multiphase ¯ow, which is not measurable in some important
situations, for example in nuclear reactors, so the development of new methods is needed.
This paper uses one piezo-resistance di�erential pressure transducer to measure the
di�erential pressure of multiphase ¯ow and through neural network intelligently identi®es
the ¯ow regime without arti®cial intervention. This method has the merits such as high
accuracy, fast and without arti®cial intervention etc.

2. In the past, we had to know the frequency band of the signals to denoise signals, but now
we don't need the prior knowledge of signals by using maximum wavelet modular value and
can preserve the information of the signal better. Therefore, the application of wavelet
theory is more extensive than the traditional denoising methods.

3. Fractal dimension is used to quantify the characteristics of the di�erential pressure signals at
di�erent ¯ow conditions. Results show that the method has the merits such as easy
computation and easily quantifying the characteristics of the measured signals, which stand
by well for the identi®cation of the ¯ow regime with neural network.

References

Chaudhry, A.B., Emerton, A.C. Jackson, R., 1965. Flow regimes in the concurrent upwards ¯ow of water and air.
Paper Presented at the Symp. Two-phase Flow, Exeter, 21±23.

Govier, G.W., Radford, B.A., Dunn, J.S.C., 1957. The upward vertical ¯ow of air water mixtures. Part 1: E�ect of
air and water rates on ¯ow pattern, hold-up and pressure drop. Can. J. Chem. Engng. 35, 58±70.

Hagiwara, Y., 1988. Experimental studies on chaotic behavior of liquid ®lm ¯ow in annular two phase ¯ows.
Physico. Chem. Hydrodanam. 10, 135±147.

Hsu, Y.Y., Simon, F.F., Graham, R.W., 1963. Application of hot wire anemometry for two phase ¯ow
measurements. In: ASME Winter Meeting, Philadelphia, PA.

Hubbard, M.G., Dukler, A.E., 1966. The characterization of ¯ow regimes for horizontal two-phase ¯ow. In: Saad,

M.A., Moller, J.A. (Eds.), Proc. 1966 Heat Transfer and Fluid Mechanics Institute. Stanford University Press,
CA, pp. 100±121.

Isbin, H.S., Moen, R.H., Wickey, R.O., Mosher, D.R., Larson, H.C., 1959. Two-phase Steam water pressure drop.

Chem. Engng. Symp. Series 23, 75±84.
Jiao, Licheng, 1995. The Theory of Neural Network System. Xidian University Press, Xi'an (in chinese).
Jones, O.C., Delhaye, J.M., 1976. Transient and statistical measurement techniques for two-phase ¯ows: a critical

review. Int. J. Multiphase Flow 3, 89±116.

Jones Jr., O.C., Zuber, N., 1975. The interrelation between void fraction ¯uctuations and ¯ow pattern in two-phase
¯ow. Int. J. Multiphase Flow 2, 273±306.

Mallat, S., Hang, W.L., 1992. Singularity detection and process with wavelets. IEEE Trans. on Information Theory

38, 617±643.
Mandelbrot, B.B., 1982. The Fractal Geometry of Nature. Freeman, New York.
Mi, Y., Tsoukalas, L.H., Ishii, M., 1997. Application of multiple self-organizing neural networks: ¯ow pattern

classi®cation. Trans. Am. Nucl. Soc. 77, 114±116.

H. Wu et al. / International Journal of Multiphase Flow 27 (2001) 459±475 475


